@phdthesis{Achenbach, author = {Achenbach, Marcus}, title = {Weiterentwicklung der Zonenmethode f{\"u}r den Nachweis der Feuerwiderstandsdauer von rechteckigen Stahlbetondruckgliedern}, publisher = {Bauhaus-Universit{\"a}tsverlag}, address = {Weimar}, isbn = {978-3-95773-264-4}, doi = {10.25643/bauhaus-universitaet.3848}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20190119-38484}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {174}, abstract = {Die Zonenmethode nach Hertz ist ein vereinfachtes Verfahren zur Heißbemessung von Stahlbetonbauteilen. Um eine h{\"a}ndische Bemessung zu erm{\"o}glichen, werden daher verschiedene Annahmen und Vereinfachungen getroffen. Insbesondere werden die thermischen Dehnungen vernachl{\"a}ssigt und das mechanische Verhalten durch einen verkleinerten Querschnitt mit konstanten Stoffeigenschaften beschrieben. Ziel der vorliegenden Arbeit ist, dieses vereinfachte Verfahren in ein nichtlineares Verfahren zur Heißbemessung von Stahlbetondruckgliedern bei Brandbeanspruchung durch die Einheits-Temperaturzeitkurve zu {\"u}berf{\"u}hren. Dazu werden die wesentlichen Annahmen der Zonenmethode {\"u}berpr{\"u}ft und ein Vorschlag zur Weiterentwicklung vorgestellt. Dieser beruht im Wesentlichen auf der Modellierung der druckbeanspruchten Bewehrung. Diese weiterentwickelte Zonenmethode wird durch die Nachrechnung von Laborversuchen validiert und das Sicherheitsniveau durch eine vollprobabilistische Analyse und den Vergleich mit dem allgemeinen Verfahren bestimmt.}, subject = {Bautechnik}, language = {de} } @phdthesis{Kavrakov, author = {Kavrakov, Igor}, title = {Synergistic Framework for Analysis and Model Assessment in Bridge Aerodynamics and Aeroelasticity}, publisher = {Bauhaus-Universit{\"a}tsverlag}, address = {Weimar}, isbn = {978-3-95773-284-2}, doi = {10.25643/bauhaus-universitaet.4109}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200316-41099}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {314}, abstract = {Wind-induced vibrations often represent a major design criterion for long-span bridges. This work deals with the assessment and development of models for aerodynamic and aeroelastic analyses of long-span bridges. Computational Fluid Dynamics (CFD) and semi-analytical aerodynamic models are employed to compute the bridge response due to both turbulent and laminar free-stream. For the assessment of these models, a comparative methodology is developed that consists of two steps, a qualitative and a quantitative one. The first, qualitative, step involves an extension of an existing approach based on Category Theory and its application to the field of bridge aerodynamics. Initially, the approach is extended to consider model comparability and completeness. Then, the complexity of the CFD and twelve semi-analytical models are evaluated based on their mathematical constructions, yielding a diagrammatic representation of model quality. In the second, quantitative, step of the comparative methodology, the discrepancy of a system response quantity for time-dependent aerodynamic models is quantified using comparison metrics for time-histories. Nine metrics are established on a uniform basis to quantify the discrepancies in local and global signal features that are of interest in bridge aerodynamics. These signal features involve quantities such as phase, time-varying frequency and magnitude content, probability density, non-stationarity, and nonlinearity. The two-dimensional (2D) Vortex Particle Method is used for the discretization of the Navier-Stokes equations including a Pseudo-three dimensional (Pseudo-3D) extension within an existing CFD solver. The Pseudo-3D Vortex Method considers the 3D structural behavior for aeroelastic analyses by positioning 2D fluid strips along a line-like structure. A novel turbulent Pseudo-3D Vortex Method is developed by combining the laminar Pseudo-3D VPM and a previously developed 2D method for the generation of free-stream turbulence. Using analytical derivations, it is shown that the fluid velocity correlation is maintained between the CFD strips. Furthermore, a new method is presented for the determination of the complex aerodynamic admittance under deterministic sinusoidal gusts using the Vortex Particle Method. The sinusoidal gusts are simulated by modeling the wakes of flapping airfoils in the CFD domain with inflow vortex particles. Positioning a section downstream yields sinusoidal forces that are used for determining all six components of the complex aerodynamic admittance. A closed-form analytical relation is derived, based on an existing analytical model. With this relation, the inflow particles' strength can be related with the target gust amplitudes a priori. The developed methodologies are combined in a synergistic framework, which is applied to both fundamental examples and practical case studies. Where possible, the results are verified and validated. The outcome of this work is intended to shed some light on the complex wind-bridge interaction and suggest appropriate modeling strategies for an enhanced design.}, subject = {Br{\"u}cke}, language = {en} } @misc{Kavrakov, type = {Master Thesis}, author = {Kavrakov, Igor}, title = {Structural Optimization of Composite Cross-Sections and Elements using Energy Methods}, doi = {10.25643/bauhaus-universitaet.3959}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20190815-39593}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {96}, abstract = {Structural optimization has gained considerable attention in the design of structural engineering structures, especially in the preliminary phase. This study introduces an unconventional approach for structural optimization by utilizing the Energy method with Integral Material Behavior (EIM), based on the Lagrange's principle of minimum potential energy. An automated two-level optimization search process is proposed, which integrates the EIM, as an alternative method for nonlinear structural analysis, and the bilevel optimization. The proposed procedure secures the equilibrium through minimizing the potential energy on one level, and on a higher level, a design objective function. For this, the most robust strategy of bilevel optimization, the nested method is used. The function of the potential energy is investigated along with its instabilities for physical nonlinear analysis through principle examples, by which the advantages and limitations using this method are reviewed. Furthermore, optimization algorithms are discussed. A numerical fully functional code is developed for nonlinear cross section, element and 2D frame analysis, utilizing different finite elements and is verified against existing EIM programs. As a proof of concept, the method is applied on selected examples using this code on cross section and element level. For the former one a comparison is made with standard procedure, by employing the equilibrium equations within the constrains. The validation of the element level was proven by a theoretical solution of an arch bridge and finally, a truss bridge is optimized. Most of the principle examples are chosen to be adequate for the everyday engineering practice, to demonstrate the effectiveness of the proposed method. This study implies that with further development, this method could become just as competitive as the conventional structural optimization techniques using the Finite Element Method.}, subject = {Strukturoptimierung}, language = {en} } @misc{Froehlich, type = {Master Thesis}, author = {Fr{\"o}hlich, Jan}, title = {On systematic approaches for interpreted information transfer of inspection data from bridge models to structural analysis}, doi = {10.25643/bauhaus-universitaet.4131}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200416-41310}, school = {Bauhaus-Universit{\"a}t Weimar}, pages = {82}, abstract = {In conjunction with the improved methods of monitoring damage and degradation processes, the interest in reliability assessment of reinforced concrete bridges is increasing in recent years. Automated imagebased inspections of the structural surface provide valuable data to extract quantitative information about deteriorations, such as crack patterns. However, the knowledge gain results from processing this information in a structural context, i.e. relating the damage artifacts to building components. This way, transformation to structural analysis is enabled. This approach sets two further requirements: availability of structural bridge information and a standardized storage for interoperability with subsequent analysis tools. Since the involved large datasets are only efficiently processed in an automated manner, the implementation of the complete workflow from damage and building data to structural analysis is targeted in this work. First, domain concepts are derived from the back-end tasks: structural analysis, damage modeling, and life-cycle assessment. The common interoperability format, the Industry Foundation Class (IFC), and processes in these domains are further assessed. The need for usercontrolled interpretation steps is identified and the developed prototype thus allows interaction at subsequent model stages. The latter has the advantage that interpretation steps can be individually separated into either a structural analysis or a damage information model or a combination of both. This approach to damage information processing from the perspective of structural analysis is then validated in different case studies.}, subject = {Br{\"u}ckenbau}, language = {en} } @article{TarabenMorgenthal, author = {Taraben, Jakob and Morgenthal, Guido}, title = {Integration and Comparison Methods for Multitemporal Image-Based 2D Annotations in Linked 3D Building Documentation}, series = {Remote Sensing}, volume = {2022}, journal = {Remote Sensing}, number = {Volume 14, issue 9, article 2286}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/rs14092286}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20220513-46488}, pages = {1 -- 20}, abstract = {Data acquisition systems and methods to capture high-resolution images or reconstruct 3D point clouds of existing structures are an effective way to document their as-is condition. These methods enable a detailed analysis of building surfaces, providing precise 3D representations. However, for the condition assessment and documentation, damages are mainly annotated in 2D representations, such as images, orthophotos, or technical drawings, which do not allow for the application of a 3D workflow or automated comparisons of multitemporal datasets. In the available software for building heritage data management and analysis, a wide range of annotation and evaluation functions are available, but they also lack integrated post-processing methods and systematic workflows. The article presents novel methods developed to facilitate such automated 3D workflows and validates them on a small historic church building in Thuringia, Germany. Post-processing steps using photogrammetric 3D reconstruction data along with imagery were implemented, which show the possibilities of integrating 2D annotations into 3D documentations. Further, the application of voxel-based methods on the dataset enables the evaluation of geometrical changes of multitemporal annotations in different states and the assignment to elements of scans or building models. The proposed workflow also highlights the potential of these methods for condition assessment and planning of restoration work, as well as the possibility to represent the analysis results in standardised building model formats.}, subject = {Bauwesen}, language = {en} } @unpublished{KavrakovArgentiniOmarinietal., author = {Kavrakov, Igor and Argentini, Tommaso and Omarini, Simone and Rocchi, Daniele and Morgenthal, Guido}, title = {Determination of complex aerodynamic admittance of bridge decks under deterministic gusts using the Vortex Particle Method}, doi = {10.25643/bauhaus-universitaet.4088}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200206-40883}, abstract = {Long-span bridges are prone to wind-induced vibrations. Therefore, a reliable representation of the aerodynamic forces acting on a bridge deck is of a major significance for the design of such structures. This paper presents a systematic study of the two-dimensional (2D) fluid-structure interaction of a bridge deck under smooth and turbulent wind conditions. Aerodynamic forces are modeled by two approaches: a computational fluid dynamics (CFD) model and six semi-analytical models. The vortex particle method is utilized for the CFD model and the free-stream turbulence is introduced by seeding vortex particles upstream of the deck with prescribed spectral characteristics. The employed semi-analytical models are based on the quasi-steady and linear unsteady assumptions and aerodynamic coefficients obtained from CFD analyses. The underlying assumptions of the semi-analytical aerodynamic models are used to interpret the results of buffeting forces and aeroelastic response due to a free-stream turbulence in comparison with the CFD model. Extensive discussions are provided to analyze the effect of linear fluid memory and quasi-steady nonlinearity from a CFD perspective. The outcome of the analyses indicates that the fluid memory is a governing effect in the buffeting forces and aeroelastic response, while the effect of the nonlinearity is overestimated by the quasi-steady models. Finally, flutter analyses are performed and the obtained critical velocities are further compared with wind tunnel results, followed by a brief examination of the post-flutter behavior. The results of this study provide a deeper understanding of the extent of which the applied models are able to replicate the physical processes for fluid-structure interaction phenomena in bridge aerodynamics and aeroelasticity.}, subject = {Bridge}, language = {en} } @unpublished{KavrakovMorgenthal, author = {Kavrakov, Igor and Morgenthal, Guido}, title = {Aeroelastic analyses of bridges using a Pseudo-3D vortex method and velocity-based synthetic turbulence generation}, doi = {10.25643/bauhaus-universitaet.4086}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200206-40864}, abstract = {The accurate representation of aerodynamic forces is essential for a safe, yet reasonable design of long-span bridges subjected to wind effects. In this paper, a novel extension of the Pseudo-three-dimensional Vortex Particle Method (Pseudo-3D VPM) is presented for Computational Fluid Dynamics (CFD) buffeting analysis of line-like structures. This extension entails an introduction of free-stream turbulent fluctuations, based on the velocity-based turbulence generation. The aerodynamic response of a long-span bridge is obtained by subjecting the 3D dynamic representation of the structure to correlated free-stream turbulence in two-dimensional (2D) fluid planes, which are positioned along the bridge deck. The span-wise correlation of the free-stream turbulence between the 2D fluid planes is established based on Taylor's hypothesis of frozen turbulence. Moreover, the application of the laminar Pseudo-3D VPM is extended to a multimode flutter analysis. Finally, the structural response from the Pseudo-3D flutter and buffeting analyses is verified with the response, computed using the semi-analytical linear unsteady model in the time-domain. Meaningful merits of the turbulent Pseudo-3D VPM with respect to the linear unsteady model are the consideration of the 2D aerodynamic nonlinearity, nonlinear fluid memory, vortex shedding and local non-stationary turbulence effects in the aerodynamic forces. The good agreement of the responses for the two models in the 3D analyses demonstrates the applicability of the Pseudo-3D VPM for aeroelastic analyses of line-like structures under turbulent and laminar free-stream conditions.}, subject = {Bridge}, language = {en} } @unpublished{KavrakovMorgenthal, author = {Kavrakov, Igor and Morgenthal, Guido}, title = {A synergistic study of a CFD and semi-analytical models for aeroelastic analysis of bridges in turbulent wind conditions}, doi = {10.25643/bauhaus-universitaet.4087}, url = {http://nbn-resolving.de/urn:nbn:de:gbv:wim2-20200206-40873}, abstract = {Long-span bridges are prone to wind-induced vibrations. Therefore, a reliable representation of the aerodynamic forces acting on a bridge deck is of a major significance for the design of such structures. This paper presents a systematic study of the two-dimensional (2D) fluid-structure interaction of a bridge deck under smooth and turbulent wind conditions. Aerodynamic forces are modeled by two approaches: a computational fluid dynamics (CFD) model and six semi-analytical models. The vortex particle method is utilized for the CFD model and the free-stream turbulence is introduced by seeding vortex particles upstream of the deck with prescribed spectral characteristics. The employed semi-analytical models are based on the quasi-steady and linear unsteady assumptions and aerodynamic coefficients obtained from CFD analyses. The underlying assumptions of the semi-analytical aerodynamic models are used to interpret the results of buffeting forces and aeroelastic response due to a free-stream turbulence in comparison with the CFD model. Extensive discussions are provided to analyze the effect of linear fluid memory and quasi-steady nonlinearity from a CFD perspective. The outcome of the analyses indicates that the fluid memory is a governing effect in the buffeting forces and aeroelastic response, while the effect of the nonlinearity is overestimated by the quasi-steady models. Finally, flutter analyses are performed and the obtained critical velocities are further compared with wind tunnel results, followed by a brief examination of the post-flutter behavior. The results of this study provide a deeper understanding of the extent of which the applied models are able to replicate the physical processes for fluid-structure interaction phenomena in bridge aerodynamics and aeroelasticity.}, subject = {Ingenieurwissenschaften}, language = {en} }